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Abstract--The subject of this study is the ice formation at the cooled walls of a curved rectangular channel 
in case of turbulent flow. The steady state morphology of ice structure was investigated experimentally in 
two channels with different curvature. Even for moderately curved channels interactions between accel- 
eration and centrifugal forces lead to significant differences in the morphology of the ice layers as compared 
to a straight channel. Additionally, a theoretical model was developed in order to describe the interaction 
of the different forces and their strong influence on the structure of turbulence. Numerically calculated ice 

layers are compared with experimental findings and a generally good agreement was found. 

INTRODUCTION 

Liquid solidification in pipes or channels is of inter- 
est in regions where the ambient temperature is below 
the freezing temperature throughout a long period of 
the year. In chemical engineering solidification might 
occur in many processes where cooling is required. 
Some of the resulting effects are desired (e.g. thermal 
insulation caused by the solid), some are unfavourable 
(e.g. in respect to an increase in pressure loss) and 
some must be avoided (pipe blockage and pipe break- 
age). 

Ice formation in straight channels has been inves- 
tigated in many previous works. For laminar flow one 
of the first theoretical models was developed by Zerkle 
and Sunderland [1]. Several other experimental as well 
as theoretical investigations followed for different geo- 
metries and/or boundary conditions [2-4]. The val- 
idity of those theories has been verified by exper- 
iments, e.g. for the parallel plate channel a very good 
experimental investigation of ice formation in laminar 
flow has been performed by Kikuchi [5]. 

Ice formation in turbulent flow shows a significant 
difference as compared to laminar flow because of the 
interactions between the ice layer development, which 
subsequently causes flow acceleration, and the struc- 
ture of turbulence itself. Strong acceleration sup- 
presses turbulence, a phenomenon which previously 
has been called 'laminarization' of the flow. Con- 
trarily, when acceleration falls short of a critical value, 
'retransition' to turbulent flow occurs and influences 
the development of the frozen crust. These inter- 
actions lead to waves in the ice layers which have been 
described in several experimental [6-9] and theoretical 
[9-11] investigations. However, as pipe systems do 
not only consist of straight ducts but contain curved 
sections as well, the consideration of curvature seems 
to be of practical importance. Despite this importance, 

ice formation in curved flow has so far been inves- 
tigated only rarely. Laminar flow ice formation in 
curved tubes was described by Oiwake and Inaba [12] ; 
Ichimiya and Shimomura [13] showed similar results 
for a rectangular channel. Ice formation in turbulent 
flow has been investigated by Fukusako [14] for the 
case of asymmetrically cooled channels where either 
the convex or the concave wall was cooled, while the 
opposite wall was adiabatic. 

The present study is concerned with a detailed inves- 
tigation of the ice formation phenomena in turbulent 
flow in a curved rectangular channel with both curved 
walls cooled. As compared to the straight channel 
there are significant differences even if the rate of 
curvature is small (i.e. 4h/Rm ~ O. 1). The ice layers are 
asymmetric and clearly show the different influence 
which curvature has on turbulence near a concave and 
a convex wall, respectively. A very detailed description 
of the effects of curvature on turbulent flow was pre- 
sented by Bradshaw [15]. 

EXPERIMENTS 

Figure 1 shows the experimental apparatus which 
consists of the test section, a circuit for the coolant 
(which is a mixture of 30% ethylene glycol and water) 
and the circulating system for the test liquid (water). 
The temperature of the coolant is held constant by 
constant cooling with the aid of a refrigeration unit 
and by simultaneous variable heating. The power 
supply of the resistance heating is controlled by a 
temperature dependant resistor (NTC). This arrange- 
ment results in fluctuations of the mean temperature 
of less than 0.05 K for steady state conditions. 

The flow rate of the water is measured with a cali- 
brated venturi nozzle which is installed behind the 
centrifugal pump and the control valve. Behind a 
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a thermal diffusivity 
B freezing parameter, 

( k ~ / k , ) ( T f -  Tw)/ (T o - Tf) 
c heat capacity 
dh hydraulic diameter, 4h 
h half channel height 
K dimensionless pressure gradient 

ratio of acceleration to centrifugal 
force 

k thermal conductivity 
l ice layer thickness or mixing length, 

respectively 
p pressure 
4 heat flux density 
R radius 
r, ~o coordinates 
Regh Reynolds number (4Reh), 

~o4h/v) 
Ri  Richardson number, 

{(a~o/r)/[(~St3r ) - -  (aSr)] } 
T temperature 
Ur, U~ velocity components 
w~ mean axial velocity 
x axial distance (center line) 
y rectangular distance from center line, 

r - -  R i . 

NOMENCLATURE 

Greek symbols 

7 
6 

®c 
v 

P 

channel curvature 
half span between ice layers 
eddy viscosity 
cooling parameter, (T f -  T,O/( To - Tf) 
kinematic viscosity 
weight function 
density 
shear stress 
stream function. 

Subscripts 
0 at entrance 
a concave wall 
f at freezing temperature 
i convex wall 
1 liquid 
m channel center line 
s solid 
t turbulent 
w wall 

outside boundary layer. 

Superscripts 
(...) time mean value 
(. . .) '  time dependant value 
(...) + wall coordinates. 

calming section, build in to obtain a fully developed 
turbulent flow, the water enters the test section. The 
mean temperature of the water is soon measured in 
front of and behind the test section. The inlet water 
temperature is controlled with a similar facility as the 
coolant temperature and the fluctuations are less than 
0.02 K for steady state conditions. 

Both test sections have a cross-section of 24 
mm x 100 mm. The radius of curvature of the moder- 
ately curved channel is 495 mm while that of the 
strongly curved channel is 1 ! 2 mm. The temperatures 
at the water side surfaces of the cooled plates are 
measured with the help of calibrated chromel-alumel 
thermocouples. The deviation of the measured wall 
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Fig. I. Experimcntal apparatus. 
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temperatures from the mean value was in all cases less 
than 0.3 K, normally less than 0.15 K. 

All data are recorded after steady state conditions 
are achieved. The thickness of the ice layer is measured 
by means of a microscope with an accuracy of 0.1 
ram. Additionally, a photographic registration of the 
ice layers is performed. To give a better contrast, the 
dye methylene blue is added to the water. This does 
not cause any change of the physical properties within 
the limits of accuracy. 

The experiments were performed in the following 
ranges of the Reynolds number and the cooling par- 
ameter : 9000 < Re4h < 47 000 and 1 < O~ < 18. 

EXPERIMENTAL OBSERVATIONS 

In a straight channel Seki [8] and Weigand [9] have 
both observed basically four different forms of ice 
layers. At the lowest values of the cooling parameter 
®c ice layers are smooth and no laminarization of the 
flow is observed. With an increase in ®c effects of 
laminarization and retransition of the turbulent flow 
become visible by an increasing variety of waves, with- 
out or with separation of the flow. Previously, the 
forms of ice layers were designated as the smooth 
transition, step transition and the wavy ice layers. 
With the exception of the wavy ice layers, which are 
unstable, the other forms were symmetric to the center 
line of the channel (see refs. [8, 9]). 

In a curved channel the ice layers are never sym- 
metric because of the completely different behaviour 
of turbulence near a convex and a concave wall. 
Because of this different behaviour, a new form of ice 
formation has been found in the experiments where 
the ice layer at the concave wall remains smooth while 
at the convex wall flow separation occurs and leads to 
a step change in ice layer thickness. In the following 
this form will be called the 'mixed transition ice layer'. 

In a curved channel an increase in cooling par- 
ameter ®~ at a constant Reynolds number results in 
the following ice formations. 

Smooth ice layers. At the lowest values of ®c, ice 
layers grow monotonically from the entrance of the 
curved channel and attain a nearly constant thickness 
downstream. No effects of laminarization are detect- 
able and the ice layers remain smooth. At the convex 
wall they are slightly thicker than at the concave wall 
[Fig. 2(a)]. Smooth ice layers are comparatively thin 
and, because of a negligible acceleration of the flow 
in the entrance region, they can be calculated with the 
help of a modified mixing length model, described 
later. 

Smooth transition ice layers. The second type are 
the smooth transition ice layers which, at both walls, 
increase in thickness from the entrance of the channel 
until they reach a maximum value. Behind that point 
ice layer thickness decreases gradually until it again 
attains a nearly constant value [Fig. 2(b)]. 

As a result of a higher freezing parameter the flow 
passage converges and the acceleration of the flow in 
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Fig. 2. (a) Smooth ice layer ; (b) smooth transition ice layer. 

the entrance region is strong enough to suppress the 
turbulent motion and to laminarize the flow. 
Especially the ice layer thickness at the convex wall 
exceeds values which would be predicted for fully 
developed turbulent flow. Some hydraulic diameters 
downstream, the acceleration recedes and the flow is 
enabled to return to its originally turbulent state. This 
enhances heat transfer and the ice layer thickness 
begins to decrease. At the concave wall this enhance- 
ment is more pronounced than at the convex wall or 
at a straight wall. 

At the convex wall turbulent motion is suppressed 
by centrifugal forces and by acceleration so that at 
this side of the channel laminarization due to accel- 
eration and suppression of the turbulent motion due 
to curvature are superimposed. This results in a 
thicker ice layer which can be observed in Fig. 2(b). 
At the point, however, where the free channel height 
begins to increase, turbulent motion is enhanced also 
at the inner (convex) wall and the ice layer thickness 
decreases. In this region the solid crust forms a diffuser 
with a small angle so that flow separation does not 
occur. 

Mixed transition ice layers. A very interesting ice 
formation is presented with the third domain because 
it accentuates the influence of curvature with regard 
to the different behaviour of the flow at the convex 
and the concave wall, even for small curvatures. Due 
to the higher rate of laminarization (higher value of 
the cooling parameter) the reactivation of the tur- 
bulent motion at the convex wall sets in more inten- 
sively than in the preceding case. Additionally, the 
slope of the velocity profile near a convex wall is 
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somewhat smaller than near a straight wall or a con- 
cave wall so that the resulting fast decrease of the ice 
layer thickness leads to flow separation at this point 
and a step is formed in the ice layer [Fig. 3(a)]. At 
the concave wall ice layer thickness starts to decrease 
further upstream and thus more gradually, and no 
separation of the flow is detected. Moreover, velocity 
gradients are steeper at concave walls than at straight 
or convex walls and, therefore, flow separation is im- 
peded additionally. As compared to the observations 
in a straight channel, flow separation at the convex 
wall starts at slightly lower values of ®c while at the 
concave wall separation occurs at higher values of the 
freezing parameter (see next paragraph). 

Step transition at both walls. A further increase in 
the cooling parameter leads to flow separation at both 
walls. At the concave wall the step in the ice layer 
develops further downstream as compared to that at 
the convex wall [Fig. 3(b)], and seems to be induced 
by flow separation at the convex wall. The asymmetry 
of the ice layers is more pronounced at low Reynolds 
numbers. 

Wavy ice layers. If the cooling parameter ®~. is 
increased again, more than one ice wave is obtained. 
The experiments show that the flow becomes unstable 
at high Reynolds numbers. Downstream of the first 
nearly symmetric step transition zone, a three-dimen- 
sional morphology develops (Fig. 4). Separation 
zones occur arbitrarily and do not span the whole 
width of the channel. In contrast to this instability 
the situation is different at low Reynolds numbers, 
Re4h < 15 000. Wavy ice layers occur already in the 
mixed transition regime and have a rather periodic 
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Fig. 3. (a) Mixed transition ice layer; (b) step transition ice 
layer. 

shape. Flow separation occurs only at the convex wall, 
while the ice layer at the concave wall still remains 
smooth (Fig. 5). The waves downstream are similar 
to the first one and are two-dimensional. Because of 
the regular shape of the steps, the mechanism of their 
development is believed to be a periodic repetition of 
the acceleration effect which leads to the first wave 
rather than instability of the flow. 

CLASSIFICATION OF THE ICE LAYERS 

The ice layers can be classified with the aid ofa ®c 
Re4h-diagram which was proposed by Gilpin [6] and 
used by Seki [8] and Weigand [9] for a straight chan- 
nel. The diagram for the moderately curved channel 
is depicted in Fig. 6. 

The different types of ice layers are marked by 
different symbols and the dashed lines, separating the 
different regimes in a straight channel (see Weigand 
[9, 11]), are added for comparison. As compared to 
those of the straight channel, the slope of the sep- 
aration lines for a curved channel is smaller. This 
indicates that retransition generally occurs at lower 
values of the cooling parameter ®~ if curvature acts 
additionally on the flow. In a curved channel ice layers 
show significant differences at the concave and the 
convex wall, respectively. The border line between the 
zone of smooth and mixed transition is the line of flow 
separation incipience at the convex wall and lies below 
that of the straight channel. Looking at the line indi- 
cating flow separation at the concave wall, one 
observes that this line lies above that of the straight 
channel, with the exception of higher Reynolds 
numbers. This observation shows that flow separation 
is suppressed by concave curvature and is enhanced 
by convex curvature. 

All observed ice layers can be explained rather easily 
in a qualitative way by the interaction of only two 
essential flow phenomena : 

(i) the strong acceleration of the flow in the 
entrance region of the test section, caused by 
the growing ice layers, suppresses the turbulent 
motion (laminarization, see Deissler [17, 18]) 
and leads to a further increase in ice layer thick- 
necks ; 

(ii) stream line curvature has, depending on the 
sign of curvature, two opposite effects: at the 
convex wall turbulent motion in the radial 
direction is suppressed, whereas it is enhanced 
at the concave wall. Basically, this yields higher 
slopes of the velocity and the temperature pro- 
file at the concave wall, and explains the obser- 
vation that flow separation is suppressed and 
heat transfer is enhanced. The explanation for 
the behaviour at the convex wall is vice versa. 

COMPARISON BETWEEN THE ICE LAYERS IN A 
STRAIGHT AND THE CURVED CHANNELS 

The effects of curvature on ice formation become 
obvious when ice layers in a straight channel are c a m -  
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Fig. 4. Irregular wavy ice layer at Re4h = 45 954 and O~ = 11.8 : (a) ~o = 0'~...24 ° (b) ~p = 72°. . .  96 °. 

Fig. 5. Periodic wavy ice layer at Re4h = 12 420 and ®c = 3.3. 
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Fig. 6. Classification of ice structures in the OcRe4wdiagram (~, = O. 1 ). 
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pared with those in the moderately curved and the 
strongly curved channel. Figure 7 shows three ice 
layers recorded at Re = 20 500 and at a cooling par- 
ameter ®c = 4. The ice layer in the straight channel 
was determined by Weigand [9] and classified as a 
smooth transition ice layer while both ice layers in 
the curved channels belong to the mixed transition 
regime. 

In the entrance region of both curved channels, the 
ice layers at the convex wails are thicker than the ice 
layer at the straight wall and are nearly identical in 
shape. From the channel entrance up to the separation 
zone they match well with ice layers calculated for 
laminar flow. This shows that, even for a moderately 
curved channel (7 = 0.1), acceleration and convex cur- 
vature together suppress turbulence almost perfectly 
and that even stronger curvature (7 = 0.43) does not 
intensify this effect. At the concave wall, however, 
acceleration and concave curvature have an opposite 
effect on turbulent motion. Acceleration suppresses 
while concave curvature enhances turbulence. This 
is elucidated by Fig. 7, showing that retransition to 
turbulent flow starts further upstream with increasing 
curvature. In the straight channel retransition is 
observed at x/h ,~ 15, in the moderately curved chan- 
nel at x/h ~ 9 and in the strongly curved channel at 
x/h ~ 3.5. As will be shown, this interaction between 
acceleration and curvature can be used to determine 
the retransition point at the concave wall theoretically. 

THE RETRANSlTION POINT AT THE CONCAVE 
WALL 

In a straight channel Gilpin [6], Seki [8] and Wei- 
gand [9] used a dimensionless pressure gradient to 
determine the retransition from the laminarized to the 
fully turbulent flow which has been defined by Moretti 
and Kays [19] : 

K - (1) 
p(u~) 3 ax 

For the curved channel this equation can be trans- 
formed to 

l/h 0 .7  : 
o S t r a i g h t  C h a n n e l  

: - -  C o n c a v e  W a l l ,  7 = 0 . 0 9 7  
0 .6  i - -  C o n v e x  W a l l ,  3' = 0 . 0 9 7  

: A ~ * *  • C o n c a v e  W M I ,  7 = 0 . 4 2 9  

0 . 0  . . . . .  , . . . . .  • • • , , . . . .  * . . . .  ~ . . . .  
0 5 10 15 2 0  2 5  3 0  

x/h 

Fig. 7. Comparison of ice layers in curved and straight 
channels. 

1 #~ 
K -  RehR m #~p. (2) 

If the pressure gradient (induced by the acceleration of 
the flow) falls below a critical value turbulent motion 
might start (instability point). Moretti and Kays [19] 
and Narasimha and%reenivasan [20] found slightly 
different values for a possible onset of turbulent 
motion. However, the instability criterion is within 
the range 

g c r i t  E [ 2  X 10-6-3.5 × 10-6]. (3) 

In a straight channel one can observe that the actual 
point of retransition lies somewhat downstream of 
the instability point and the difference between those 
two locations was determined by Seki [8] and Weigand 
[9] with the help of an empirical formula. 

At the concave wall of a curved channel the point 
of retransition can be determined with high accuracy 
with the following consideration. Retransition will 
occur when the ratio of the acceleration force to the 
centrifugal force falls below a critical value, i.e. 

dw w 2 d6 
W 

dx 6 dx 
W 2 W 2 

R R 

R d6 1 de5 
- t5 dx 3 dtp < ~ / ' c r i t '  

(4) 

As a first approximation affen, can be estimated to be 
1, which means that retransition occurs if acceleration 
and centrifugal forces are of the same order of magni- 
tude. The actual critical value, however, was obtained 
from the experiments at the location where the ice 
layers at the convex and the concave wall begin to 
diverge, which is shortly in front of the point of 
maximum ice layer thickness at the concave wall ; see 
Fig. 8(a). It was found that ~cr~t is independent of 
the flow Reynolds number but that there is a linear 
dependance on the cooling parameter ®c [Fig. 8(b)]. 
The linear dependance on ®~ holds for the moderately 
as well as for the strongly curved channel, but with a 
different slope. This requires an additional depend- 
ance on the radius of curvature of the channel and 
finally the critical value ' )q~'cr i t  becomes 

9f~it = 0.0495®c 7 075 (5) 

where 

7 = dh/Rm. (6) 

With this equation the instability point at the concave 
wall can be determined easily. 

ANALYSIS 

The theoretical investigation which will be outlined 
briefly can be separated into two parts, the sim- 
plification of the conservation equations and the 
modelling of the turbulent quantities. 

The boundary conditions and the geometry of the 
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Fig. 8. (a) Retransition point at the concave wall (from 
experiments) ; (b) dependance of ~ i t  on the cooling par- 

ameter O~ and on the curvature 7. 

test sections used for the experimental investigation 
lead to the assumption that the flow is two-dimen- 
sional. This has been confirmed by several inves- 
tigations of turbulent  flows in curved rectangular 
channels (e.g. see refs. [22-24]). Furthermore,  the 
analysis is based on the assumption of an incom- 
pressible, Newtonian fluid with constant  properties k, 
c, p and q, and steady state conditions are presumed. 
Figure 9 shows the geometry of the channel under  
consideration. As usual for the theoretical treatment 
of turbulent  flows, the quantities of the flow field are 
split into their time mean and time dependent value, 
and because of an assumed large curvature radius the 
common boundary  layer approximation can be used 
[15]. With these assumptions the conservation equa- 
tions for mass, momentum and energy can be written 
as follows : 

,X>----_R m 

i.l..: i 
Tw=T o Tw<T F 

Fig. 9. Geometry of the channel, 

Continui ty equation : 

1 O(arr) 1 OO~ 
a ~  + r ~  =o. (7) 

Conservation of momentum in r-direction : 

1 a e  - (8) 
r p Or" 

Conservation of momentum in ~0-direction : 

l~ r~r  + -- r &o pr 0q9 

+ --  ~r vr -- . (9) r 2 

Conservation of energy for the liquid : 

ar~r r~T a ~ T  1 8 r  [ ~ T +  1 /  . - 5 7 _ - ~ ) ? .  (lO) 
r Oq9 r ~grLrka,, 

Conservation of energy for the solid : 

a~ ~ [ ~ T ~  
r ?r t r~rr  ) =0" (11) 

The static pressure p and the shear stress % are com- 
bined in the new quanti ty P with P = p + %. 

Boundary conditions and interface energy equation 
To solve the partial differential equations the fol- 

lowing boundary  and initial conditions for the liquid 
and the solid are used : 

~ 0 = 0 :  a t = 0 ;  a~ ,Pg iven ;  T =  T0 ([2) 

r = Ri+l  i _~ R m - 6  and r = Ra-I ,  ~- Rmq-•: 

~ = 0, T =  T, = Tt (13) 

and additionally for the solid phase : 

r = R i a n d r = R a :  T s =  Tw. (14) 

At the solid liquid interface (i.e. r = R,+l, and 
r = Ra- la )  conservation of energy leads to a relation 
between the radial temperature gradients in the liquid 
and the solid. Steady state conditions provided, the 
heat flux from the liquid to the solid must equal the 
heat flux from the solid to the wall. This condit ion 
may be written in terms of the temperature gradients: 

aTs OT 
= k, ~ -. (15) k~ ?ZTr ~,r 

Coordinate transformation and dimensionless quan- 
tities 

After the introduction of a stream function ~0 which 
is defined 

&o = ~rr; ar r &p (16) 

the equations are cast into a dimensionless form by 
dividing all variables by an appropriate combinat ion 
of the quantities Woo, h, ~/-R~, p and ( T o -  Tr) and are 
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solved numerically using the Keller-Box-method (see 
ref. [25]). 

MODELLING OF THE TURBULENT QUANTITIES 

The purpose of this chapter is the development of 
a turbulence model to describe the combined action 
of acceleration and curvature on the turbulent quan- 
tities. As already pointed out, turbulence in a curved 
channel with solidification at the walls is affected by 
(i) strong acceleration of the flow due to the growing 
ice layer, (ii) the stabilizing effect of curvature at the 
convex wall and (iii) the destabilizing effect of cur- 
vature at the concave wall. The representation of a 
mixed transition ice layer in a curved channel (Fig. 10) 
shows four different zones where the above-mentioned 
forces have a different influence on the ice formation. 

Z o n e  I. In the entrance region (1) of the cooled 
test section acceleration of the flow is predominant. 
Curvature of the wall has almost no influence on the 
structure of turbulence because acceleration forces are 
significantly higher. Narasimha and Sreenivasan [20] 
showed that turbulent motion in the axial (4o) direc- 
tion is suppressed by strong acceleration forces. From 
theoretical considerations Deissler [17, 18] developed 
a turbulence model for highly accelerated flows and 
showed that the Reynolds shear stress and the tur- 
bulent heat flux are nearly constant for a constant 
value of the stream function 0 : 

u;u~(~k) = u~u~(O)10 (17) 

and 

u'~T'(~s) = u~T'(~s)lo. ( 18 )  

The critical value indicating strong acceleration was 
defined by Moretti and Kays [19] and is given by the 
equations (2) and (3). The actual acceleration of the 
flow at the entrance of the channel, however, is about 
one or two orders of magnitude higher and, therefore, 
equation (17) holds almost exactly in zone I. 

Z o n e  IV. In zone IV the acceleration of the flow is 
negligibly small and thus the effects of curvature 

Fig. 10. Four zones of different influence on turbulent motion 
in a curved channel. 

prevail. The Reynolds shear stress -pu;u~p and the 
turbulent heat flux - p c T ' u ~  are related to the mean 
quantities of the flow by an eddy viscosity concept : 

rt = - pu ;u ;  = petr ~;~r 

{ T  ~ T  
fit = - p e T ' u ;  = kt-?. r = p c a t ~ .  (20) 

The turbulent thermal diffusivity is calculated from 
the turbulent Prandtl number 

Prt = ~:t /a t  (21 ) 

with Prt as proposed by Kays [21]: 

= ~1.43-0.17(V+) °2s i fP r t>0 .85  
Pr, [0.85 " otherwise. (22) 

For the fully developed turbulent flow a modified 
mixing length model is applied. To consider the effects 
of curvature Bradshaw [15] suggested the variation of 
the mixing length by a function of the Richardson 
number. For the turbulent shear stress this yields 

with the mixing length l: 

, ,,0 ,, e p( 
h 10 h 

x I 0 . 1 4 - 0 . 0 8 ( 1 - h ) 2 - 0 . 0 6 ( 1 - h ) ~  1. (24) 

The constant/7 in this equation has been determined to 
match the experimental findings of Wattendorf [22], 
Eskinazi and Yeh [23] and Kobayashi [24], resulting 
in 

0.5 at the convex wall 
/l = 20 at the concave wall. (25) 

The different value of/3 at the convex and the concave 
wall, respectively, is called "zonal modelling" (see 
Muck et al. [16]). The exponent n is found by a theor- 
etical consideration, yielding 

n = ~. (26) 

Z o n e s  II and  III. In the intermediate zones II and 
Ill the reactivation of the turbulent motion has to be 
determined taking into account the different behaviour 
at the concave and the convex wall. 

Behind the point of retransition at the concave wall 
turbulent motion at the convex wall is further sup- 
pressed by the centrifugal forces. This is visualized by 
Fig. 8(a) as a different development of the ice layer 
thickness at the inner and the outer wall. If a fluid 
particle near the convex wall is displaced radially into 
a region where the local radial pressure gradient is 
higher than the centrifugal force of the particle, it will 
be forced back to its original location. This behaviour 
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can be expressed in terms of the Richardson number 
as a result of a stability consideration in the radial 
direction which yields 

< 0  and > 1 for stability (27) 
l+2Ri  > 0  and < I for instability. 

When the flow gets unstable because of ceasing accel- 
eration, the turbulent motion recovers rapidly in axial 
direction. The onset of the turbulent motion in axial 
direction is described analogously to the transition 
from laminar to turbulent flow and has the form of 
an exponential function of the axial coordinate ~o. 

The total turbulent shear stress in the transitional 
regions II and III is described as a transition from the 
Deissler shear stress in zone I, equation (17), to the 
mixing length value in zone IV, equation (23), with 
the help of a weight function 

U;Uq = ~" U;b/~o fDeissle r q- (1 --  ~)" b/;b/•lrnixinglength (28) 

with 

= exp ( -  Cq2) x f (1  + 2Ri) (29) 

(see Braun [26, 27]), wheref is  a function of (1 +2Ri)  
with a value between 0 and 1. In stable regions [see 
equation (27)] fequa ls  1. 

Equation (28) takes into account the transition 
from laminarized to turbulent flow in axial direction 
as well as the suppression of turbulence near the con- 
vex wall and enhancement of turbulence near the con- 
cave wall. Figure 11 shows the weight function which 
has been calculated for a typical flow field of a mixed 
transition ice layer. With the help of the described 
theoretical model a computer program was developed 
to solve the partial differential equations numerically 
and to compare the results of the theoretical model 
with measured ice layers. 

In case of flow separation and recirculation in zone 
Ill,  the FLARE approximation (see ref. [28]) is 

applied additionally in order to get the calculation 
numerically stable. This approximation presumes that 
the transport terms in axial direction in the momen- 
tum and the energy equation are negligible in regions 
of recirculation where the axial velocity component is 
negative. 

RESULTS AND DISCUSSION 

The calculated ice layers are in good agreement with 
the measured values in all four zones of the channel, 
placing confidence in the theoretical model. Results 
of the numerical calculations of a smooth ice layer 
and a smooth transition ice layer are depicted in Fig. 
2(a) and (b). Even for mixed and step transition ice 
layers the numerical analysis and the experiments 
compare quite well [Fig. 3(a) and (b)]. 

Because of the asymmetry due to curvature, mixed 
transition ice layers are very appropriate to dem- 
onstrate the effects of curvature and, therefore, a com- 
parison between a calculated and a measured mixed 
transition ice layer will be discussed in more detail. 
Figure 12(a) shows the same ice layer as in Fig. 3(a). 
This representation is more suitable to compare the 
calculation and the measurement in the four different 
zones of the channel. 

In zone I (0 ~< x/h <~ 7.5), where the ice layer is 
calculated with the help of the Deissler model, the 
agreement between theory and experiment is excellent. 
This shows clearly the strong laminarization of the 
flow caused by acceleration. In the experiment retran- 
sition at the concave wall occurred at x/h ~ 7. This 
is in very good agreement with the calculated value 
x/h ~ 7.5 from the retransition criterion in the curved 
channel, equation (5). 

In zone II, which is defined up to the maximum 
ice layer thickness at the convex wall, theory and 
experiment are in a reasonably good agreement 

maximum ice layer at ~ woll 

the concave wall 

j. 

Fig. 11. Weight function ~ of the Deissler shear stress. 

tp 
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Fig. 12. Calculated mixed transition ice layers : (a) moderate curvature, (b) strong curvature. 

(7.5 ~< x/h ~ 15.5). In zone I l l  (15.5 ~< x/h <~ 20.5), 
where flow separation occurs at the convex wall, the 
agreement between theory and experiment is rather 
poor. Especially, the deviation between the calculated 
and the measured values of  minimum ice layer thick- 
ness is conspicous. This shows that further work has 
to be done on the theoretical modeling. In the last zone 
IV of  the channel (x/h >>- 20.5), where acceleration is 
comparatively small as compared to the centrifugal 

forces, the flow behaviour is modeled very accurately 
with the aid of  the Richardson model and the devi- 
ations between theory and experiment are again very 
small. 

Generally, it can be pointed out that the results of  
the experiment and the numerical analysis are in good 
agreement for the moderately curved channel. 

Finally, a comparison between a calculated and a 
measured ice layer for the strongly curved channel 
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(7 = 0.429) is presented in Fig. 12(b). The  plot  again  
shows a very good agreement  for zones I and  II. In 
zone III  the agreement  is comparab le  to tha t  in the 
moderate ly  curved channel ,  whereas  the coincidence 
is ra ther  bad  in zone IV. This shows tha t  the mixing 
length model ,  modified for curved flows by the 
Richardson  number ,  is no  longer valid for s trongly 
curved channels  and  tha t  addi t ional  effects, such as 
large scale eddies, influence the tu rbu len t  quantit ies.  

SUMMARY 

The measu remen t  of  the ice layer thickness in a 
curved rectangular  channel  leads to the conclusion 
tha t  there exist four zones with a different influence 
on  the forces acting on  the tu rbu len t  mot ion.  These 
are the entrance zone of  the cooled channel  where 
accelerat ion is p r edom i nan t  and  any influence of  wall 
curvature  can be neglected, a zone where centrifugal  
forces and  flow accelerat ion are of  the same order  of  
magni tude  and  re t ransi t ion is enhanced  by instabil i ty 
at the concave wall, a zone where flow separa t ion  may 
occur  and  finally a region where the flow is a lmost  
only affected by s t ream line curvature.  
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